Registration Number: 180123717
%% d ) Phase - lag c ompen sat or
ess_a = 0.0 25; % steady - state error for a par aboli c input 0.5 At ^2
Ka_d = 1/ ess_a ; % Ka desired
Ka_act = ( z_lead / p_lead ) *( K /(a*b));
% ca lcu lat ing the zero and pole of the co mpe nsa tor
alpha = Ka_d / Ka_a ct ;
z_lag = abs ( x ) /10;
p_lag = z_lag / alpha ;
% Gc phase - lag c omp ensat or
Gc_lag = (s+ z_lag ) /( s+ p_lag );
2.6 Evaluation of the performance
Finally, the open-loop of the Phase-Lead compensator in series with the Phase-Lag compensator
is written as follows,
G
ol1
= G
lag
G
lead
G(s) (36)
G
ol1
=
s + 0.14
s + 0.0092
s + 1
s + 8.36
10047
s
2
(s + 9)(s + 50)
and the Pre-filter with the closed-loop systems is,
G
lag+lead+prefilter
= G
pf
G
ol1
1 + G
ol1
(37)
G
lag+lead+prefilter
= G
pf
10047(s + 1)(s + 0.14)
(s + 50)(s + 13.05)(s + 1.78)(s + 0.14)(s
2
+ 2.51 s + 8.75)
Fig. 5c shows the step response of the system with and without the Pre-filter, it is clear
that the Pre-filter reduces the overshoot in both cases with good settling time, the performance
results can be seen in Table 2. On the other hand, in Fig. 5a, the desired dominant poles are
slightly out of the root locus, it is recommended to add a second Phase-lead compensator in
series in order correct that gap.
Quantity Lead Prefilter+Lead Lead+Lag Prefilter+Lead+Lag
Rise Time 0.37 1.00 0.36 0.94
Settling Time 2.79 3.08 3.59 3.31
Percentage Overshoot 51.46 0.07 57.96 1.79
Phase Margin 40.80 -180 36.60 36.60
Gain Margin 8.96 7.07 8.51 8.51
Bandwidth 4.87 2.31 4.89 2.58
Peak Magnitude 1.51 1.00 1.58 1.02
Table 2: Performance evaluation to unit step response
The following Matlab script was used to evaluate the performance of the previous systems.
%% Evalua tin g the perf orm anc e with the phase - lead , phase - lag and p refil ter
Go l_l ead _la g = Gc_lead * Gc_lag *G ;
Gc l_l ead _la g = feedb ac k ( Gol_lead _lag ,1) ;
fig = figure (5) ;
rlocus ( Gcl_ lea d_l ag );
hold ;
% plo ti ng the s1 and zeta in the rlocus
n = 0:1:160; m = n * sqrt ( zeta ^2/(1 - zeta ^2) );
axis ([ -4 1 -4 4]) ;
plot ( -m ,n , ’-- ’) ; % zeta
13